刷题首页
题库
高中数学
题干
已知两点
、
,动点
满足
,记
的轨迹为曲线
,直线
(
)交曲线
于
、
两点,点
在第一象限,
轴,垂足为
,连结
并延长交曲线
于点
.
(1)求曲线
的方程,并说明曲线
是什么曲线;
(2)若
,求△
的面积;
(3)证明:△
为直角三角形.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-29 06:12:57
答案(点此获取答案解析)
同类题1
已知点
是椭圆
的一个焦点,点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
与椭圆
交于不同的
两点,且
(
为坐标原点),求直线
斜率的取值范围.
同类题2
在直角坐标系中,已知椭圆
经过点
,且其左右焦点的坐标分别是
,
.
(1)求椭圆
的离心率及标准方程;
(2)设
为动点,其中
,直线
经过点
且与椭圆
相交于
,
两点,若
为
的中点,是否存在定点
,使
恒成立?若存在,求点
的坐标;若不存在,说明理由
同类题3
已知圆
,定点
为圆上一动点,线段
的垂直平分线交线段
于点
,设点
的轨迹为曲线
;
(Ⅰ)求曲线
的方程;
(Ⅱ)若经过
的直线
交曲线于不同的两点
,(点
在点
,
之间),且满足
,求直线
的方程.
同类题4
设圆
的圆心为
A
,直线
过点
B
(1,0)且与
轴不重合,
交圆
A
于
C
,
D
两点,过
B
作
AC
的平行线交
AD
于点
E
.
(Ⅰ)证明:
为定值,并写出点
E
的轨迹方程;
(Ⅱ)设点
E
的轨迹为曲线
C
1
,直线
交
C
1
于
M
,
N
两点,过
B
且与
垂直的直线与
C
1
交于
P
,
Q
两点, 求证:
是定值,并求出该定值.
同类题5
椭圆
的焦点为
,
,过
与
轴垂直的直线交椭圆于第一象限的
点,点
关于坐标原点的对称点为
,且
,
,则椭圆方程为( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的定义
利用椭圆定义求方程
求直线与椭圆的交点坐标