- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆定义及辨析
- + 利用椭圆定义求方程
- 椭圆上点到焦点的距离及最值
- 椭圆上的点到坐标轴上的点的距离及最值
- 椭圆中焦点三角形的周长问题
- 椭圆上点到焦点和定点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知定点
,
为圆
上任意一点,线段
上一点
满足
,直线
上一点
,满足
.
(1)当
在圆周上运动时,求点
的轨迹
的方程;
(2)若直线
与曲线
交于
两点,且以
为直径的圆过原点
,求证:直线
与
不可能相切.









(1)当



(2)若直线







如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.
(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB|•|FQ|=|BF•|EQ|.
(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB|•|FQ|=|BF•|EQ|.

已知点
和动点
,以线段
为直径的圆内切于圆
.
(1)求动点
的轨迹方程;
(2)已知点
,
,经过点
的直线
与动点
的轨迹交于
,
两点,求证:直线
与直线
的斜率之和为定值.




(1)求动点

(2)已知点









已知圆
,圆
,动圆
与圆
外切并且与圆
内切,圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
作圆
的两条切线,切点分别为
,求直线
被曲线
截得的弦的中点坐标.







(1)求曲线

(2)过点






已知圆M:
,圆N:
,动圆P与圆M外切并且与圆N内切,圆心P轨迹为曲线C.
求曲线C的方程;
若A、B是曲线C上关于x轴对称的两点,点
,直线DB交曲线C于另一点E,求证:直线AE过定点,并求该定点的坐标.





已知定点
,动点P是圆M:
上的任意一点,线段NP的垂直平分线和半径MP相交于点Q.
求
的值,并求动点Q的轨迹C的方程;
若圆
的切线l与曲线C相交于A,B两点,求
面积的最大值.







在平面直角坐标系xOy中,已知动圆S过定点
,且与定圆Q:
相切,记动圆圆心S的轨迹为曲线


A. (1)求曲线C的方程; (2)设曲线C与x轴,y轴的正半轴分别相交于A,B两点,点M,N为椭圆C上相异的两点,其中点M在第一象限,且直线AM与直线BN的斜率互为相反数,试判断直线MN的斜率是否为定值.如果是定值,求出这个值;如果不是定值,说明理由; (3)在(2)条件下,求四边形AMBN面积的取值范围. |