- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左右焦点分别是
,
,离心率
过点
且垂直于x轴的直线被椭圆E截得的线段长为3.
(1)求椭圆E的方程;
(2)若直线l过椭圆E的右焦点
,且与x轴不重合,交椭圆E于M,N两点,求
的取值范围.





(1)求椭圆E的方程;
(2)若直线l过椭圆E的右焦点


已知椭圆
的左焦点为
,椭圆上动点
到点
的最远距离和最近距离分别为
和
.
(1)求椭圆的方程;
(2)设
分别为椭圆的左、右顶点,过点
且斜率为
的直线
与椭圆交于
、
两点,若
,
为坐标原点,求
的面积.






(1)求椭圆的方程;
(2)设









已知椭圆
的离心率为
,其左、右焦点分别为
,左、右顶点分别为
,上、下顶点分别为
,四边形
的面积为4.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于
两点,
(其中
为坐标原点),求直线
被以线段
为直径的圆截得的弦长.







(1)求椭圆

(2)直线







已知椭圆
的左、右焦点分别为
,离心率为
,且
在椭圆
上运动,当点
恰好在直线l:
上时,
的面积为
.
(1)求椭圆
的方程;
(2)作与
平行的直线
,与椭圆交于
两点,且线段
的中点为
,若
的斜率分别为
,求
的取值范围.










(1)求椭圆

(2)作与








已知两点A(﹣2,0)、B(2,0),动点P满足
.
(1)求动点P的轨迹Ω的方程;
(2)若椭圆
上点(x0,y0)处的切线方程是
:
①过直线l:x=4上一点M引Ω的两条切线,切点分别是P、Q,求证:直线PQ恒过定点N;
②是否存在实数λ,使得|PN|+|QN|=λ|PN|•|QN|?若存在,求出λ的值;若不存在,说明理由.

(1)求动点P的轨迹Ω的方程;
(2)若椭圆


①过直线l:x=4上一点M引Ω的两条切线,切点分别是P、Q,求证:直线PQ恒过定点N;
②是否存在实数λ,使得|PN|+|QN|=λ|PN|•|QN|?若存在,求出λ的值;若不存在,说明理由.
如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的“辅圆”.过椭圆第一象限内一点P作x轴的垂线交其“辅圆”于点Q,当点Q在点P的上方时,称点Q为点P的“上辅点”.已知椭圆
上的点
的上辅点为
.

(1)求椭圆E的方程;
(2)若
的面积等于
,求上辅点Q的坐标;
(3)过上辅点Q作辅圆的切线与x轴交于点T,判断直线PT与椭圆E的位置关系,并证明你的结论.




(1)求椭圆E的方程;
(2)若


(3)过上辅点Q作辅圆的切线与x轴交于点T,判断直线PT与椭圆E的位置关系,并证明你的结论.
已知椭圆
的左、右焦点分别为
、
,焦点为
的抛物线
的准线被椭圆
截得的弦长为
.
(1)求椭圆
的标准方程;
(2)若点
、
到直线
的距离之积为
,求证:直线
与椭圆
相切.







(1)求椭圆

(2)若点






在平面直角坐标系中,若
,
,且
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设(Ⅰ)中曲线
的左、右顶点分别为
、
,过点
的直线
与曲线
交于两点
,
(不与
,
重合).若直线
与直线
相交于点
,试判断点
,
,
是否共线,并说明理由.



(Ⅰ)求动点


(Ⅱ)设(Ⅰ)中曲线
















某同学的作业不小心被墨水玷污,经仔细辨认,整理出以下两条有效信息:
①题目:“在平面直角坐标系
中,已知椭圆
的左顶点为
,过点
作两条斜率之积为2的射线与椭圆交于
,…”
②解:“设
的斜率为
,…点
,
,…”
据此,请你写出直线
的斜率为 .(用
表示)
①题目:“在平面直角坐标系





②解:“设




据此,请你写出直线

