- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
的左、右焦点分别为
,
,过
且垂直于
轴的焦点弦的弦长为
,过
的直线
交椭圆
于
,
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)已知直线
,
互相垂直,直线
过
且与椭圆
交于点
,
两点,直线
过
且与椭圆
交于
,
两点.求
的值.














(1)求椭圆

(2)已知直线













已知
,
是椭圆
:
的左右两个焦点,过
的直线与
交于
,
两点(
在第一象限),
的周长为8,
的离心率为
.
(1)求
的方程;
(2)设
,
为
的左右顶点,直线
的斜率为
,
的斜率为
,求
的取值范围.












(1)求

(2)设








已知动点
到点
的距离与它到直线
的距离
的比值为
,设动点
形成的轨迹为曲线
..
(1)求曲线
的方程;
(2)过点
的直线与曲线
交于
两点,过
点作
,垂足为
,过
点作
,垂足为
,求
的取值范围.







(1)求曲线

(2)过点










已知离心率为
的椭圆
的左顶点为A,且椭圆E经过
与坐标轴不垂直的直线l与椭圆E交于C,D两点,且直线AC和直线AD的斜率之积为
.
(I)求椭圆E的标准方程;
(Ⅱ)求证:直线l过定点.





(I)求椭圆E的标准方程;
(Ⅱ)求证:直线l过定点.
已知点
,
分别是椭圆
的左顶点和上顶点,
为其右焦点,
,且该椭圆的离心率为
;
(1)求椭圆
的标准方程;
(2)设点
为椭圆上的一动点,且不与椭圆顶点重合,点
为直线
与
轴的交点,线段
的中垂线与
轴交于点
,若直线
斜率为
,直线
的斜率为
,且
(
为坐标原点),求直线
的方程.







(1)求椭圆

(2)设点














已知椭圆C:
(a>b>0)的左.右顶点分别为A,B,离心率为
,点P
为椭圆上一点.

(1) 求椭圆C的标准方程;
(2) 如图,过点C(0,1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1=2k2,求直线l斜率的值.




(1) 求椭圆C的标准方程;
(2) 如图,过点C(0,1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1=2k2,求直线l斜率的值.
设椭圆
的焦距为2,且点
在椭圆上,左右顶点为
,
,左右焦点为
,
.过点
作斜率为
的直线
交椭圆
于
轴上方的点
,交直线
于点
,直线
与椭圆
的另一个交点为
,直线
与直线
交于点
.

(1)求椭圆
的标准方程;
(2)若
,求
的值;
(3)若
,求实数
的取值范围.





















(1)求椭圆

(2)若


(3)若

