刷题首页
题库
高中数学
题干
已知离心率为
的椭圆
的左顶点为
A
,且椭圆
E
经过
与坐标轴不垂直的直线
l
与椭圆
E
交于
C
,
D
两点,且直线
AC
和直线
AD
的斜率之积为
.
(I)求椭圆
E
的标准方程;
(Ⅱ)求证:直线
l
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-26 12:41:06
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,点
在椭圆上,
,
分别为椭圆
的上、下顶点,点
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
的另一交点分别为
,证明:直线
过定点.
同类题2
已知椭圆C:
的两个焦点分别为
,
,点P是椭圆上的任意一点,且
的最大值为4,椭圆C的离心率与双曲线
的离心率互为倒数.
Ⅰ
求椭圆C的方程;
Ⅱ
设点
,过点P作两条直线
,
与圆
相切且分别交椭圆于M,N,求证:直线MN的斜率为定值.
同类题3
已知椭圆
C
:
(
a
>
b
>0)的右焦点
F
(1,0),右顶点
A
,且|
AF
|=1.
(1)求椭圆
C
的标准方程.
(2)若动直线
l
:
y
=
kx
+
m
与椭圆
C
有且只有一个交点
P
,且与直线
x
=4交于点
Q
,问:是否存在一个定点
M
(
t
,0),使得
?若存在,求出点
M
的坐标;若不存在,说明理由.
同类题4
已知椭圆
的长轴长为
,焦距为2,抛物线
的准线经过椭圆
的左焦点
.
(1)求椭圆
与抛物线
的方程;
(2)直线
经过椭圆
的上顶点且
与抛物线
交于
,
两点,直线
,
与抛物线
分别交于点
(异于点
),
(异于点
),证明:直线
的斜率为定值.
同类题5
已知A为焦距为
的椭圆E:
(
a
>b>0)的右顶点,点P(0,
),直线PA交椭圆E于点B,
.
(1)求椭圆E的方程;
(2)设过点P且斜率为
的直线
与椭圆E交于M、N两点(M在P、N之间),若四边形MNAB的面积是△PMB面积的5倍.求直线
的斜率
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题