刷题首页
题库
高中数学
题干
已知点
,
分别是椭圆
的左顶点和上顶点,
为其右焦点,
,且该椭圆的离心率为
;
(1)求椭圆
的标准方程;
(2)设点
为椭圆上的一动点,且不与椭圆顶点重合,点
为直线
与
轴的交点,线段
的中垂线与
轴交于点
,若直线
斜率为
,直线
的斜率为
,且
(
为坐标原点),求直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-26 12:41:08
答案(点此获取答案解析)
同类题1
已知椭圆C:
(
a
>
b
>0),左、右焦点分别为F
1
(﹣1,0),F
2
(1,0),椭圆离心率为
,过点P(4,0)的直线
l
与椭圆C相交于A、B两点(A在B的左侧).
(1)求椭圆C的方程;
(2)若B是AP的中点,求直线
l
的方程;
(3)若B点关于
x
轴的对称点是E,证明:直线AE与
x
轴相交于定点.
同类题2
设
是焦距为2的椭圆
上一点,
是椭圆
的左、右顶点,直线
与
的斜率分别为
,且
.
(1)求椭圆
的方程;
(2)已知椭圆
上点
处切线方程为
,若
是直线
上任意一点,从
向椭圆
作切线,切点分别为
,求证直线
恒过定点,并求出该定点坐标.
同类题3
已知椭圆
C
:
,
其离心率为
,焦距长为
,直线
l
过定点
,与椭圆交于不同两点
.
(1)求椭圆的方程;
(2)求
的取值范围.
同类题4
已知椭圆
,点
是
长轴上的一个动点,过点
的直线
与
交于
两点,与
轴交于点
,弦
的中点为
.当
为
的右焦点且
的倾斜角为
时,
,
重合,
.
(1)求椭圆
的方程;
(2)当
均与原点
不重合时,过点
且垂直于
的直线
与
轴交于点
.求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题