- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
记
.
(1)求方程
的实数根;
(2)设
,
,
均为正整数,且
为最简根式,若存在
,使得
可唯一表示为
的形式
,试求椭圆
的焦点坐标;
(3)已知
,是否存在
,使得
成立,若存在,试求出
的值;若不存在,请说明理由.


(1)求方程

(2)设









(3)已知




设中心在原点O,焦点在x轴上的椭圆C过点
,F为C的右焦点,⊙F的方程为
(1)求C的方程;
(2)若直线
与⊙O相切,与⊙F交于M、N两点,与C交于P、Q两点,其中M、P在第一象限,记⊙O的面积为
,求
取最大值时,直线l的方程.


(1)求C的方程;
(2)若直线




椭圆
:
的左、右焦点分别是
,
,点
是椭圆
上除长轴端点外的任一点,连接
,
,
的周长为
.
(1)求椭圆
的标准方程;
(2)设
的角平分线
交椭圆
的长轴于点
,求
的取值范围.










(1)求椭圆

(2)设





已知椭圆
,
为坐标原点,
为椭圆上任意一点,
,
分别为椭圆的左、右焦点,且
,
,
依次成等比数列,其离心率为
.过点
的动直线
与椭圆相交于
、
两点.
(1)求椭圆
的标准方程;
(2)当
时,求直线
的方程;
(3)在平面直角坐标系
中,若存在与点
不同的点
,使得
成立,求点
的坐标.














(1)求椭圆

(2)当


(3)在平面直角坐标系




