刷题首页
题库
高中数学
题干
椭圆
:
的左、右焦点分别是
,
,点
是椭圆
上除长轴端点外的任一点,连接
,
,
的周长为
.
(1)求椭圆
的标准方程;
(2)设
的角平分线
交椭圆
的长轴于点
,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 11:26:51
答案(点此获取答案解析)
同类题1
已知椭圆
C
:
的两个焦点分别为
,点
M
(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆
C
的方程;
(2)过点
M
(1,0)的直线与椭圆
C
相交于
A
、
B
两点,设点
N
(3,2),记直线
AN
、
BN
的斜率分别为
k
1
、
k
2
,求证:
k
1
+
k
2
为定值.
同类题2
已知椭圆
的左、右焦点分别为
,
,离心率为
,过
作直线
与椭圆
交于
,
两点,
的周长为8.
(1)求椭圆
的标准方程;
(2)问:
的内切圆面积是否有最大值?若有,试求出最大值;若没有,说明理由.
同类题3
已知椭圆
的左、右焦点是
,左右顶点是
,离心率是
,过
的直线与椭圆交于两点
P
、
Q
(不是左、右顶点),且
的周长是
,
直线
与
交于点
M
.
(1)求椭圆的方程;
(2)(ⅰ)求证直线
与
交点
M
在一条定直线
l
上;
(ⅱ)
N
是定直线
l
上的一点,且
PN
平行于
x
轴,证明:
是定值.
同类题4
已知椭圆
的两个焦点分别为
,以椭圆短轴为直径的圆经过点
.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
相交于
两点,设点
,直线
的斜率分别为
,问
是否为定值?并证明你的结论.
同类题5
如图所示,已知椭圆
:
的长轴为
,过点
的直线
与
轴垂直,椭圆
上一点与椭圆
的长轴的两个端点构成的三角形的最大面积为2,且椭圆的离心率为
.
(1)求椭圆
的标准方程;
(2) 设
是椭圆
上异于
,
的任意一点,连接
并延长交直线
于点
,
点为
的中点,试判断直线
与椭圆
的位置关系,并证明你的结论.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程