刷题首页
题库
高中数学
题干
如图,已知椭圆
过点
两个焦点为
和
.圆
O
的方程为
.
(1)求椭圆
C
的标准方程;
(2)过
且斜率为
的动直线
l
与椭圆
C
交于
A
、
B
两点,与圆
O
交于
P
、
Q
两点(点
A
、
P
在
x
轴上方),当
成等差数列时,求弦
PQ
的长.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-16 12:39:49
答案(点此获取答案解析)
同类题1
已知抛物线
与
椭圆
的一个交点为
,点
是
的焦点,且
.
(1)求
与
的方程;
(2)设
为坐标原点,在第一象限内,椭圆
上是否存在点
,使过
作
的垂线交抛物线
于
,直线
交
轴于
,且
?若存在,求出点
的坐标和
的面积;若不存在,说明理由.
同类题2
已知椭圆
(
)的离心率是
,其左、右焦点分别为
,短轴顶点分别为
,如图所示,
的面积为1.
(1)求椭圆
的标准方程;
(2)过点
且斜率为
的直线
交椭圆
于
两点(异于
点),证明:直线
和
的斜率和为定值.
同类题3
已知椭圆
的左,右焦点分别为
,
,点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)是否存在斜率为
的直线
与椭圆
相交于
,
两点,使得
?若存在,求出直线的方程;若不存在,说明理由.
同类题4
已知椭圆
的右焦点为
,上顶点为
,直线
与直线
垂直,椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)过点
作椭圆
的两条互相垂直的弦
.若弦
的中点分别为
,证明:直线
恒过定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据直线与椭圆的位置关系求参数或范围