刷题首页
题库
高中数学
题干
已知椭圆
的焦距为4,且过点
.
(1)求椭圆
的标准方程;
(2)设
为椭圆
上一点,过点
作
轴的垂线,垂足为
,取点
,连接
,过点
作
的垂线交
轴于点
,点
是点
关于
轴的对称点,作直线
,问这样作出的直线
是否与椭圆
一定有唯一的公共点?并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-16 11:11:37
答案(点此获取答案解析)
同类题1
已知椭圆
的中心在原点,焦点在
轴上,
为椭圆
短轴的一个端点,
为椭圆
的右焦点,线段
的延长线与椭圆
相交于点
,且
.
(1)求椭圆
的标准方程;
(2)设直线
与椭圆
相交于
,
两点,
为坐标原点,若直线
与
的斜率之积为
,求
的取值范围.
同类题2
已知
是焦距为
的椭圆
的右顶点,点
,直线
交椭圆
于点
,
为线段
的中点.
(1)求椭圆
的方程;
(2)设过点
且斜率为
的直线
与椭圆
交于
,
两点,若
,求直线
的斜率
.
同类题3
已知椭圆
,点
,
中恰有三点在椭圆
上.
(1)求椭圆
的方程;
(2)设
是椭圆
上的动点,由原点
向圆
引两条切线,分别交椭圆于点
,若直线
的斜率存在,并记为
,试问
的面积是否为定值?若是,求出该值;若不是,请说明理由.
同类题4
已知椭圆
:
的离心率为
,点
在椭圆上,
为坐标原点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知点
、
、
为椭圆
上的三点,若四边形
为平行四边形,证明四边形
的面积
为定值,并求出该定值.
同类题5
已知椭圆
(
)的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于不同的两点
,
,试问在
轴上是否存在定点
使得直线
与直线
恰关于
轴对称?若存在,求出点
的坐标;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
讨论椭圆与直线的位置关系