刷题首页
题库
高中数学
题干
已知椭圆
:
的左、右焦点分别为
,
,上顶点为
,离心率为
,且
的面积为
.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
交于
,
两点,且点
,
位于
轴的同侧,设直线
与
轴交于点
,
,若
,求直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-12 10:39:22
答案(点此获取答案解析)
同类题1
设椭圆的左、右焦点分别为
,上顶点为
,若
,则该椭圆的标准方程为___________
.
同类题2
已知椭圆
经过点
,
是
的一个焦点,过
点的动直线
交椭圆于
两点.
(1)求椭圆
的方程;
(2)是否存在定点
(异于点
),对任意的动直线
(斜率存在)都有
,若存在求出点
的坐标,若不存在,请说明理由.
同类题3
已知椭圆
的焦距为2,过点
.
(1)求椭圆
的标准方程;
(2)设椭圆的右焦点为
F
,定点
,过点
F
且斜率不为零的直线
l
与椭圆交于
A
,
B
两点,以线段
AP
为直径的圆与直线
的另一个交点为
Q
,证明:直线
BQ
恒过一定点,并求出该定点的坐标.
同类题4
已知椭圆
C
:
(
a
>
b
>0)的右焦点
F
(1,0),右顶点
A
,且|
AF
|=1.
(1)求椭圆
C
的标准方程.
(2)若动直线
l
:
y
=
kx
+
m
与椭圆
C
有且只有一个交点
P
,且与直线
x
=4交于点
Q
,问:是否存在一个定点
M
(
t
,0),使得
?若存在,求出点
M
的坐标;若不存在,说明理由.
同类题5
椭圆
的两个焦点为
,点P在椭圆C 上,且
,
,
.
(1)求椭圆C的方程;
(2)若直线L过点
交椭圆于A、B两点,且点M为线段AB的中点,求直线L的一般方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题