刷题首页
题库
高中数学
题干
以双曲线
的焦点为顶点,顶点为焦点的椭圆方程为______.
上一题
下一题
0.99难度 填空题 更新时间:2020-01-11 11:41:51
答案(点此获取答案解析)
同类题1
已知椭圆
的左、右焦点分别为
,过点
且斜率为
的直线和以椭圆的右顶点为圆心,短半轴为半径的圆相切.
(1)求椭圆的方程;
(2)椭圆的左、右顶点分为
A
,
B
,过右焦点
的直线
l
交椭圆于
P
,
Q
两点,求四边形
APBQ
面积的最大值.
同类题2
在平面直角坐标系
中,椭圆
的长轴长
,短轴长
.
(1)求椭圆的方程;
(2)记椭圆的左右顶点
,分别过
作
轴的垂线交直线
于点
,
为 椭圆上位于
轴上方的动点,直线
,
分别交直线
于点
,
.
(i)当直线
的斜率为2时,求
的面积;
(ii)求
的最小值.
同类题3
已知椭圆
离心率
,过左焦点
且垂直于
轴的直线交椭圆于点
,且
.
(1)求椭圆的方程;
(2)点
在椭圆上,求
的最大值.
同类题4
已知椭圆
的左、右焦点分别为
,离心率为
,
为椭圆上一动点(异于左右顶点),若
面积的最大值为
.
(1)求椭圆
的方程;
(2)若直线
过点
交椭圆
于
两点,问在
轴上是否存在一点
,使得
为定值?若存在,求点
的坐标;若不存在,请说明理由.
同类题5
已知椭圆C:
的两个焦点分别为
,
,点P是椭圆上的任意一点,且
的最大值为4,椭圆C的离心率与双曲线
的离心率互为倒数.
Ⅰ
求椭圆C的方程;
Ⅱ
设点
,过点P作两条直线
,
与圆
相切且分别交椭圆于M,N,求证:直线MN的斜率为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求双曲线的焦点坐标