- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程的概念
- 曲线的交点问题
- + 轨迹问题
- 求平面轨迹方程
- 立体几何中的轨迹问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设椭圆方程为
,过点
的直线l交椭圆于点A,B,O是坐标原点,点P满足
,点N的坐标为
,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)
的最小值与最大值.




(1)动点P的轨迹方程;
(2)

设椭圆
过点
、
.
(1)求椭圆
的方程;
(2)
、
为椭圆的左、右焦点,直线
过
与椭圆交于
、
两点,求△
面积的最大值;
(3)求动点
的轨迹方程,使得过点
存在两条互相垂直的直线
、
,且都与椭圆只有一个公共点.




(1)求椭圆

(2)







(3)求动点




如图,
所在的平面
和四边形
所在的平面
垂直,且
,
,
,
,
,
,则点P在平面
内的轨迹是( )













A.圆的一部分 | B.一条直线 | C.一条线段 | D.两条直线 |
设复数β=x+yi(x,y∈R)与复平面上点P(x,y)对应.
(1)若β是关于t的一元二次方程t2﹣2t+m=0(m∈R)的一个虚根,且|β|=2,求实数m的值;
(2)设复数β满足条件|β+3|+(﹣1)n|β﹣3|=3a+(﹣1)na(其中n∈N*、常数
),当n为奇数时,动点P(x、y)的轨迹为C1.当n为偶数时,动点P(x、y)的轨迹为C2.且两条曲线都经过点
,求轨迹C1与C2的方程;
(3)在(2)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于
,求实数x0的取值范围.
(1)若β是关于t的一元二次方程t2﹣2t+m=0(m∈R)的一个虚根,且|β|=2,求实数m的值;
(2)设复数β满足条件|β+3|+(﹣1)n|β﹣3|=3a+(﹣1)na(其中n∈N*、常数


(3)在(2)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于
