刷题首页
题库
高中数学
题干
在平面直角坐标系中,动点
(
)到点
的距离与到
轴的距离之差为1.
(1)求点
的轨迹
的方程;
(2)若
,过点
作任意一条直线交曲线
于
,
两点,试证明:
是一个定值.
上一题
下一题
0.99难度 解答题 更新时间:2018-06-21 10:39:59
答案(点此获取答案解析)
同类题1
已知椭圆
的长轴长为
,焦距为2,抛物线
的准线经过椭圆
的左焦点
.
(1)求椭圆
与抛物线
的方程;
(2)直线
经过椭圆
的上顶点且
与抛物线
交于
,
两点,直线
,
与抛物线
分别交于点
(异于点
),
(异于点
),证明:直线
的斜率为定值.
同类题2
已知抛物线C的顶点为原点,焦点F与圆
的圆心重合.
(1)求抛物线C的标准方程;
(2)设定点
,当P点在C上何处时,
的值最小,并求最小值及点P的坐标;
(3)若弦
过焦点
,求证:
为定值.
同类题3
已知F为抛物线E:
(p>0)的焦点,C(
,1)为E上一点,且|CF|=2.过F任作两条互相垂直的直线
,
,分别交抛物线E于P,Q和M,N两点,A,B分别为线段PQ和MN的中点.
(1)求抛物线E的方程及点C的坐标;
(2)试问
是否为定值?若是,求出此定值;若不是,请说明理由;
(3)证明直线AB经过一个定点,求此定点的坐标,并求△AOB面积的最小值.
同类题4
如下图,过抛物线
上一定点
,作两条直线分别交抛物线于
,
.
(1)求该抛物线上纵坐标为
的点到其焦点
的距离;
(2)当
与
的斜率存在且倾斜角互补时,求
的值,并证明直线
的斜率是非零常数.
同类题5
已知抛物线
,准线方程为
,直线
过定点
(
)且与抛物线交于
、
两点,
为坐标原点.
(1)求抛物线的方程;
(2)
是否为定值,若是,求出这个定值;若不是,请说明理由;
(3)当
时,设
,记
,求
的解析式.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
抛物线中的定点、定值
抛物线中的定值问题