刷题首页
题库
高中数学
题干
已知三点
,
,
,曲线
上任意一点
满足
.
(1)求
的方程;
(2)动点
在曲线
上,
是曲线
在
处的切线.问:是否存在定点
使得
与
都相交,交点分别为
,且
与
的面积之比为常数?若存在,求
的值;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-07-10 05:37:50
答案(点此获取答案解析)
同类题1
已知点
A
(−2,0),
B
(2,0),动点
M
(
x
,
y
)满足直线
AM
与
BM
的斜率之积为−
.记
M
的轨迹为曲线
C
.
(1)求
C
的方程,并说明
C
是什么曲线;
(2)过坐标原点的直线交
C
于
P
,
Q
两点,点
P
在第一象限,
PE
⊥
x
轴,垂足为
E
,连结
QE
并延长交
C
于点
G
.
(i)证明:
是直角三角形;
(ii)求
面积的最大值.
同类题2
为抛物线
上一点,且在第一象限,过点
作
垂直该抛物线的准线于点
为抛物线的焦点,
为坐标原点, 若四边形
的四个顶点在同一个圆上,则该圆的方程为_______
同类题3
已知
为椭圆
和双曲线
的公共顶点,过原点的直线
分别与椭圆和双曲线在第一象限交于
两点.
(1)若椭圆的离心率为
,求双曲线的渐近线方程;
(2)设
的斜率分别为
,求证:
;
(3)设
分别为椭圆和双曲线的右焦点,若
∥
,试求
的值.
相关知识点
平面解析几何
圆锥曲线
抛物线中的定值问题