- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抛物线M:
的准线过椭圆N:
的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.

(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.



(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
四边形ABCD的四个顶点都在抛物线
上,A,C关于
轴对称,BD平行于抛物线在点C处的切线.
(Ⅰ)证明:AC平分
;
(Ⅱ)若点A坐标为
,四边形ABCD的面积为4,求直线BD的方程.


(Ⅰ)证明:AC平分

(Ⅱ)若点A坐标为

已知直线
交抛物线C:
于A、B两点,M是线段AB的中点,过M作
轴的垂线交C于点N.

(1)若直线
过抛物线C的焦点,且垂直于抛物线C的对称轴,试用
表示|AB|;
(2)证明:过点N且与AB平行的直线
和抛物线C有且仅有一个公共点;
(3)是否存在实数
,使
=0.若存在,求出
的所有值;若不存在,说明理由.




(1)若直线


(2)证明:过点N且与AB平行的直线

(3)是否存在实数



已知两点
,点
为坐标平面内的动点,且满足
.
(1)求点
的轨迹
的方程;
(2)设过点
的直线
的斜率为
,且与曲线
相交于点
,若
两点只在第二象限内运动,线段
的垂直平分线交
轴于
点,求
点横坐标的取值范围.



(1)求点


(2)设过点










已知曲线
上的动点
满足到点
的距离比到直线
的距离小
.
(1)求曲线
的方程;
(2)动点
在直线
上,过点
分别作曲线
的切线
、
,切点为
、
.
(ⅰ)求证:直线
恒过一定点,并求出该定点的坐标;
(ⅱ)在直线
上是否存在一点
,使得
为等边三角形(
点也在直线
上)?若存在,求出点
坐标,若不存在,请说明理由





(1)求曲线

(2)动点








(ⅰ)求证:直线

(ⅱ)在直线





