- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆E:
(
)过点
,且它的右焦点为
.
(1)求椭圆E的方程;
(2)过A且倾斜角互补的两直线分别交椭圆E于点B、C(不同于点A),且
,求直线AB的方程.




(1)求椭圆E的方程;
(2)过A且倾斜角互补的两直线分别交椭圆E于点B、C(不同于点A),且

已知椭圆
过点
,且其中一个焦点的坐标为
.
(1)求椭圆
的方程;
(2)若经过
的直线
(与
轴不重合)与椭圆交于
两点,在
轴上是否存在点
使得
为定值?若存在,求岀点
的坐标;若不存在,请说明理由.



(1)求椭圆

(2)若经过








已知椭圆
离心率为
,四个顶点构成的四边形的面积是4.
(1)求椭圆C的标准方程;
(2)若直线
与椭圆C交于P,Q均在第一象限,直线OP,OQ的斜率分别为
,
,且
(其中O为坐标原点).证明:直线l的斜率k为定值.


(1)求椭圆C的标准方程;
(2)若直线



