- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
动点
到
距离与到直线
的距离之比为
,记动点
的轨迹为
.
(1)求出曲线
的方程,并求出
的最小值,其中点
(2)
是曲线
上的动点,且直线
经过定点
,问在
轴上是否存在定点
,使得
,若存在,请求出定点
;若不存在,请说明理由.






(1)求出曲线



(2)








已知椭圆C:
过点
,且离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过原点的直线
与椭圆C交于P、Q两点,且在直线
上存在点M,使得
为等边三角形,求直线
的方程。



(Ⅰ)求椭圆C的方程;
(Ⅱ)若过原点的直线




设抛物线
的焦点为
,过点
的直线与抛物线相交于
,
两点,与抛物线的准线相交于点
,
,则
与
的面积之比
等于( )










A.![]() | B.![]() | C.![]() | D.![]() |
设
、
分别为双曲线
的左、右焦点.若在双曲线右支上存在点
,满足
,且
到直线
的距离等于双曲线的实轴长,则该双曲线的渐近线方程为







A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
,经过椭圆
上一点
的直线
与椭圆
有且只有一个公共点,且点
横坐标为
.

(1)求椭圆
的标准方程;
(2)若
是椭圆的一条动弦,且
,
为坐标原点,求
面积的最大值.









(1)求椭圆

(2)若



