- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系中,有两个圆
和
,其中
,
为正常数,满足
或
,一个动圆
与两圆都相切,则动圆圆心的轨迹方程可以是( )







A.两个椭圆 | B.两个双曲线 |
C.一个双曲线和一条直线 | D.一个椭圆和一个双曲线 |
美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.雅中高2018级某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆,若“切面”所在平面与底面成60°角,则该椭圆的离心率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
的左、右焦点
、
,
是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆恰好经过椭圆的焦点,且△
的周长为
.
(1)求椭圆
的方程;
(2)设直线
是圆
的切线,
与椭圆
交与不同的两点
,
,证明:
的大小为定值.






(1)求椭圆

(2)设直线







如图,
轴,点
在
的延长线上,且
.当点
在圆
上运动时,

(1)求点
的轨迹方程.
(2)过点
作直线
与点
的轨迹相交于
、
两点,使点
被弦
平分,求直线
的方程.







(1)求点

(2)过点








已知椭圆
的左、右焦点为别为F1、F2,且过点
和
.

(1)求椭圆的标准方程;
(2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点B,AO的延长线与椭圆交于点C,求△ABC面积的最大值,并写出取到最大值时直线BC的方程.




(1)求椭圆的标准方程;
(2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点B,AO的延长线与椭圆交于点C,求△ABC面积的最大值,并写出取到最大值时直线BC的方程.
已知抛物线:
的焦点为
,直线
:
与抛物线交于
,
两点,
,
的延长线与抛物线交于
,
两点.
(1)若
的面积等于3,求
的值;
(2)记直线
的斜率为
,证明:
为定值,并求出该定值.










(1)若


(2)记直线


