- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
是椭圆
:
的左焦点,O为坐标原点,
为椭圆上的点.
(1)求椭圆
的标准方程;
(2)若点
都在椭圆
上,且
中点
在线段
(不包括端点)上,求
面积的最大值,及此时直线
的方程.




(1)求椭圆

(2)若点







设双曲线
的左、右焦点分别为
,
,
,过
作
轴的垂线与双曲线在第一象限的交点为
,已知
,
,点
是双曲线
右支上的动点,且
恒成立,则双曲线的离心率的取值范围是( )












A.![]() | B.![]() | C.![]() | D.![]() |
设椭圆
(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为
,点A的坐标为
,且
.
(I)求椭圆的方程;
(II)设直线l:
与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若
(O为原点) ,求k的值.




(I)求椭圆的方程;
(II)设直线l:


已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为( )
A.![]() | B. ![]() | C. ![]() | D. ![]() |
已知双曲线C:
,左、右焦点分别为
,过点
作一直线与双曲线C的右半支交于P、Q两点,使得∠F1PQ=90°,则△F1PQ的内切圆的半径r =________.



已知点P在曲线x2+y2=1上运动,过点P作x轴的垂线,垂足为Q,动点M满足
.
(1)求动点M的轨迹方程;
(2)点A、B在直线x﹣y﹣4=0上,且AB=4,求△MAB的面积的最大值.

(1)求动点M的轨迹方程;
(2)点A、B在直线x﹣y﹣4=0上,且AB=4,求△MAB的面积的最大值.