- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与圆的位置关系
- 由直线与圆的位置关系求参数
- 求直线与圆交点的坐标
- + 直线与圆相交的性质——韦达定理及应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆C经过P(4,-2),Q(-1,3)两点,且圆心在x轴上.
(1)求直线PQ的方程;
(2)圆C的方程;
(3)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.
(1)求直线PQ的方程;
(2)圆C的方程;
(3)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.
(本小题满分
分)
已知半径为
的圆的圆心在
轴上,圆心的横坐标是整数,且与直线
相切.
(Ⅰ)求圆的方程.
(Ⅱ)设直线
与圆相交于
,
两点,求实数
的取值范围.
(Ⅲ)在(Ⅱ)的条件下,是否存在实数
,使得点
到
,
两点的距离相等,若存在,求出实数
的值;若不存在,请说明理由.

已知半径为



(Ⅰ)求圆的方程.
(Ⅱ)设直线




(Ⅲ)在(Ⅱ)的条件下,是否存在实数





在平面直角坐标系xOy中,设圆x2+y2-4x=0的圆心为Q.
(1)求过点P(0,-4)且与圆Q相切的直线的方程;
(2)若过点p(0,-4)且斜率为k的直线与圆Q相交于不同的两点A,B,以OA、OB为邻边做平行四边形OABC,问是否存在常数k,使得平行四边形OABC为矩形?请说明理由.
(1)求过点P(0,-4)且与圆Q相切的直线的方程;
(2)若过点p(0,-4)且斜率为k的直线与圆Q相交于不同的两点A,B,以OA、OB为邻边做平行四边形OABC,问是否存在常数k,使得平行四边形OABC为矩形?请说明理由.
已知点
及圆
.
(1)设过点
的直线
与圆
交于
两点,当
时,求以线段
为直径的圆
的方程;
(2)设直线
与圆
交于
两点,是否存在实数
,使得过点
的直线
垂直平分弦
?若存在,求出实数
的值;若不存在,请说明理由.


(1)设过点







(2)设直线








已知经过
两点的圆
半径小于5,且在
轴上截得的线段长为
.
(1)求圆
的方程;
(2)已知直线
,若
与圆
交于
两点,且以线段
为直径的圆经过坐标原点,求直线
的方程.




(1)求圆

(2)已知直线






已知线段
的端点
,端点
在圆
上运动
(Ⅰ)求线段
的中点
的轨迹方程.
(Ⅱ) 设动直线
与圆
交于
两点,问在
轴正半轴上是否存在定点
,使得直线
与直线
关于
轴对称?若存在,请求出点
的坐标;若不存在,请说明理由.




(Ⅰ)求线段


(Ⅱ) 设动直线









已知圆
:
上的点
关于点
的对称点为
,记
的轨迹为
.
(1)求
的轨迹方程;
(2)设过点
的直线
与
交于
,
两点,试问:是否存在直线
,使以
为直径的圆经过原点?若存在,求出直线
的方程;若不存在,请说明理由.







(1)求

(2)设过点








已知圆
:
,直线
:
.
(1)设点
是直线
上的一动点,过
点作圆
的两条切线,切点分别为
,求四边形
的面积的最小值;
(2)过
作直线
的垂线交圆
于
点,
为
关于
轴的对称点,若
是圆
上异于
的两个不同点,且满足:
,试证明直线
的斜率为定值.




(1)设点






(2)过











