- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 直线的方向向量
- 平面的法向量
- + 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示的空间几何体中,底面四边形
为正方形,
,
,平面
平面
,
,
,
.

(1)求二面角
的大小;
(2)若在平面
上存在点
,使得
平面
,试通过计算说明点
的位置.









(1)求二面角

(2)若在平面





如图1,在边长为2的正方形
中,
是边
的中点.将
沿
折起使得平面
平面
,如图2,
是折叠后
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的平面角的余弦值.










(Ⅰ)求证:


(Ⅱ)求二面角

如图,在直四棱柱ABCD-A1B1C1D1中,底面四边形ABCD为菱形,A1A=AB=2,∠ABC=
,E,F分别是BC,A1C的中点.
(2)点M在线段A1D上,
.若CM∥平面AEF,求实数λ的值.

(2)点M在线段A1D上,

如图,直三棱柱
中,

是棱
上的点,

(Ⅰ)求证:
为
中点;
(Ⅱ)求直线
与平面
所成角正弦值大小;
(Ⅲ)在
边界及内部是否存在点
使得
面
存在,说明
位置,不存在,说明理由







(Ⅰ)求证:


(Ⅱ)求直线


(Ⅲ)在





如图:已知三棱锥
中,
面
,
,
,
为
上一点,
,
分别为
的中点.
(1)证明:
.
(2)求面
与面
所成的锐二面角的余弦值.
(3)在线段
(包括端点)上是否存在一点
,使
平面
?若存在,确定
的位置;若不存在,说明理由.










(1)证明:

(2)求面


(3)在线段






在长方体ABCD-A1B1C1D1中,AB=2,BC=B1B=1,M、N分别是AD、DC的中点.
(1)求证:MN//A1C1;
(2)求:异面直线MN与BC1所成角的余弦值.
(1)求证:MN//A1C1;
(2)求:异面直线MN与BC1所成角的余弦值.

如图,已知矩形ABCD中,AB=1,BC=
,PA
平面ABCD,且PA=1。
(1)问BC边上是否存在点Q,使得PQ
QD?并说明理由;
(2)若边上有且只有一个点Q,使得PQ
QD,求这时二面角Q
的正切。



(1)问BC边上是否存在点Q,使得PQ

(2)若边上有且只有一个点Q,使得PQ


