刷题首页
题库
高中数学
题干
如图,已知矩形ABCD中,AB=1,BC=
,PA
平面ABCD,且PA=1。
(1)问BC边上是否存在点Q,使得PQ
QD?并说明理由;
(2)若边上有且只有一个点Q,使得PQ
QD,求这时二面角Q
的正切。
上一题
下一题
0.99难度 解答题 更新时间:2012-05-14 02:37:28
答案(点此获取答案解析)
同类题1
直三棱柱
的底面
上,
,点
、
分别在棱
、
上,且
,
,
,
.
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
同类题2
已知CD是等边三角形ABC的AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-
A.
(1)求直线BC与平面DEF所成角的余弦值;
(2)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.
同类题3
已知平面
内的三点
,
,
,平面
的一个法向量为
,且
与
不重合,则( )
A.
B.
C.
与
相交但不垂直
D.以上都不对
同类题4
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,O为AD中点,AB=1,AD=2,AC=CD=
.
(1)证明:直线AB∥平面PCO;
(2)求二面角P-CD-A的余弦值;
(3)在棱PB上是否存在点N,使AN⊥平面PCD,若存在,求线段BN的长度;若不存在,说明理由.
同类题5
四棱锥
中,底面
为矩形,
.侧面
底面
.
(1)证明:
;
(2)设
与平面
所成的角为
,求二面角
的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明