- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间直角坐标系
- 空间向量及其运算
- + 空间向量的应用
- 直线的方向向量
- 平面的法向量
- 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
求证:CD⊥平面PAE.
求证:CD⊥平面PAE.

已知正四棱台ABCD-A1B1C1D1中,上底面A1B1C1D1边长为1,下底面ABCD边长为2,侧棱与底面所成的角为60°,则异面直线AD1与B1C所成角的余弦值为__________.
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
PD,则平面PQC与平面DCQ的位置关系为( )



A.平行 | B.垂直 |
C.相交但不垂直 | D.位置关系不确定 |
在正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点.
(1)证明:平面AED⊥平面A1FD1;
(2)在AE上求一点M,使得A1M⊥平面DAE.
(1)证明:平面AED⊥平面A1FD1;
(2)在AE上求一点M,使得A1M⊥平面DAE.
若直线l的方向向量为a=(-1,0,-2),平面α的法向量为u=(4,0,8),则( )
A.l∥α | B.l⊥α |
C.l⊂α | D.l与α斜交 |