- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间直角坐标系
- 空间向量及其运算
- + 空间向量的应用
- 直线的方向向量
- 平面的法向量
- 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在棱长为1的正方体ABCD—A1B1C1D1中,E是BC的中点,
平面B1ED交A1D1于F。
(1)指出F在A1D1上的位置,并说明理由;
(2)求直线A1C与DE所成的角的余弦值;
平面B1ED交A1D1于F。
(1)指出F在A1D1上的位置,并说明理由;
(2)求直线A1C与DE所成的角的余弦值;

如图,已知四棱锥P-ABCD的底面是直角梯形,AD∥BC,∠ADC=90º,AD=2BC,PA⊥平面ABCD.
(1)设E为线段PA的中点,求证:BE∥平面PCD;
(2)若PA=AD=DC,求平面PAB与平面PCD所成锐二面角的余弦值.
(1)设E为线段PA的中点,求证:BE∥平面PCD;
(2)若PA=AD=DC,求平面PAB与平面PCD所成锐二面角的余弦值.

如图,四棱锥S—ABCD的底面是正方形,侧棱SA⊥底面ABCD,
过A作AE垂直SB交SB于E点,作AH垂直SD交SD于H点,平面AEH交SC于K点,且AB=1,SA=2.

(1)证明E、H在以AK为直径的圆上,且当点P是SA上任一点时,试求
的最小值;
(2)求平面AEKH与平面ABCD所成的锐二面角的余弦值.
过A作AE垂直SB交SB于E点,作AH垂直SD交SD于H点,平面AEH交SC于K点,且AB=1,SA=2.

(1)证明E、H在以AK为直径的圆上,且当点P是SA上任一点时,试求

(2)求平面AEKH与平面ABCD所成的锐二面角的余弦值.
下列说法中不正确的是( )
A.平面α的法向量垂直于与平面α共面的所有向量 |
B.一个平面的所有法向量互相平行 |
C.如果两个平面的法向量垂直,那么这两个平面也垂直 |
D.如果a、b与平面α共面且n⊥a,n⊥b,那么n就是平面α的一个法向量 |
如图,在空间直角坐标系中有长方体ABCD-A1B1C1D1,AB=1,BC=2,AA1=3,则点B到直线A1C的距离为( )


A.![]() | B.![]() | C.![]() | D.1 |
如图,在直三棱柱
中,

分别是棱
的中点,点
在线段
上(包括两个端点)运动.

(1)当
为线段
的中点时,
与平面
所成的角的正弦值的取值范围.








(1)当


①求证:;②求平面
与平面
所成锐二面角的余弦值;


如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.

(1)证明:AE⊥PD;
(2)若AB=2,PA=2,求二面角E-AF-C的余弦值.

(1)证明:AE⊥PD;
(2)若AB=2,PA=2,求二面角E-AF-C的余弦值.
如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=
,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD的中点.

(1)求直线PB与平面POC所成角的余弦值.
(2)线段PD上是否存在一点Q,使得二面角Q-AC-D的余弦值为
?若存在,求出
的值;若不存在,请说明理由.


(1)求直线PB与平面POC所成角的余弦值.
(2)线段PD上是否存在一点Q,使得二面角Q-AC-D的余弦值为

