- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间直角坐标系
- 空间向量及其运算
- + 空间向量的应用
- 直线的方向向量
- 平面的法向量
- 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在正方体
中,
分别是棱
的中点,
为棱
上一点,且异面直线
与
所成角的余弦值为
.

(1)证明:
为
的中点;
(2)求平面
与平面
所成锐二面角的余弦值.









(1)证明:


(2)求平面


如图,已知三棱柱
,侧面
.
(Ⅰ)若
分别是
的中点,求证:
;
(Ⅱ)若三棱柱
的各棱长均为2,侧棱
与底面
所成的角为
,问在线段
上是否存在一点
,使得平面
?若存在,求
与
的比值,若不存在,说明理由.


(Ⅰ)若



(Ⅱ)若三棱柱









