- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间向量的有关概念
- 空间共线向量定理
- 空间共面向量定理
- 空间向量的数乘运算
- + 空间向量的数量积运算
- 空间向量数量积的概念辨析
- 求空间向量的数量积
- 空间向量数量积的应用
- 空间向量的正交分解与坐标表示
- 空间向量运算的坐标表示
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点
,且法向量为
的直线(点法式)方程为:
,化简得
.类比以上方法,在空间直角坐标系中,经过点
,且法向量为
的平面的方程为( )






A.![]() | B.![]() |
C.![]() | D.![]() |