- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间向量的有关概念
- 空间共线向量定理
- 空间共面向量定理
- 空间向量的数乘运算
- + 空间向量的数量积运算
- 空间向量数量积的概念辨析
- 求空间向量的数量积
- 空间向量数量积的应用
- 空间向量的正交分解与坐标表示
- 空间向量运算的坐标表示
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,三棱柱
的各棱长均为2,侧面
底面
,侧棱
与底面
所成的角为
.

上是否存在点
,使得平面
平面
?若存在,求出
的长;若不存在,请说明理由.








(Ⅰ)求直线与底面
所成的角;





如图,在三棱柱ABC﹣A1B1C1中,四边形ACC1A1和BCC1B1均为正方形,且所在平面互相垂直.
(Ⅰ)求证:BC1⊥AB1;
(Ⅱ)求直线BC1与平面AB1C1所成角的大小.
(Ⅰ)求证:BC1⊥AB1;
(Ⅱ)求直线BC1与平面AB1C1所成角的大小.
