- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 二面角的概念及辨析
- + 求二面角
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(2018届浙江省杭州市第二次检测)已知三棱锥 S-ABC 的底面 ABC 为正三角形, SA<SB<SC,平面 SBC, SCA, SAB 与平面 ABC 所成的锐二面角分别为 α1, α2, α3,则( )
A.α1<α2 | B.α1>α2 |
C.α2<α3 | D.α2>α3 |
如图,已知平面
,
,
、
是直线
上的两点,
、
是平面
内的两点,且
,
,
,
,
.
是平面
上的一动点,且直线
,
与平面
所成角相等,则二面角
的余弦值的最小值是( )





















A.![]() | B.![]() | C.![]() | D.![]() |
如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2
,BC=6.
(1)求证:BD⊥平面PAC; (2)求二面角P-BD-A的大小.


(1)求证:BD⊥平面PAC; (2)求二面角P-BD-A的大小.
已知斜三棱柱
的底面是直角三角形,
,侧棱与底面成锐角
,点
在底面上的射影
落在
边上.

(Ⅰ) 求证:
平面
;
(Ⅱ) 当
为何值时,
,且
为
的中点?
(Ⅲ) 当
,且
为
的中点时,若
,四棱锥
的体积为
,求二面角
的大小.







(Ⅰ) 求证:


(Ⅱ) 当




(Ⅲ) 当






