- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断面面是否垂直
- + 证明面面垂直
- 补全面面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,以
为顶点的六面体中,
和
均为等边三角形,
,且平面
平面
,
平面
,
是
的中点,连接
.

(Ⅰ)求证:
;
(Ⅱ)求证:
平面
;
(Ⅲ)求三棱锥
的体积.












(Ⅰ)求证:

(Ⅱ)求证:


(Ⅲ)求三棱锥

如图,四棱锥
的底面
是菱形,
,
平面
,
是
的中点.

(1)求证:平面
平面
;
(2)棱
上是否存在一点
,使得
平面
?若存在,确定
的位置并加以证明;若不存在,请说明理由.








(1)求证:平面


(2)棱





如图,三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点.
(1)求证:平面ABED∥平面FGH;
(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.
(1)求证:平面ABED∥平面FGH;
(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2a,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)判断平面BCE与平面CDE的位置关系,并证明你的结论.

(1)求证:AF∥平面BCE;
(2)判断平面BCE与平面CDE的位置关系,并证明你的结论.
如图,在三棱柱ABC-A1B1C1中,AB = AC,点E,F分别在棱BB1 ,CC1上(均异于端点),且∠ABE=∠ACF,AE⊥BB1,AF⊥CC1.
求证:(1)平面AEF⊥平面BB1C1C;
(2)BC // 平面AEF.
求证:(1)平面AEF⊥平面BB1C1C;
(2)BC // 平面AEF.

如图,四棱锥
中,
,且
平面
,
为棱
的中点.

(1)求证:
∥平面
;
(2)求证:平面
平面
;
(3)当四面体
的体积最大时,判断直线
与直线
是否垂直,并说明理由.







(1)求证:


(2)求证:平面


(3)当四面体


