- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断面面是否垂直
- + 证明面面垂直
- 补全面面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在三棱柱
中,
平面
.
,
,
,
,
分别为
和
的中点,
为侧棱
上的动点.
(
)求证:平面
平面
.
(
)若
为线段
的中点,求证:
平面
.
(
)试判断直线
与平面
是否能够垂直.若能垂直,求
的值,若不能垂直,请说明理由.













(



(





(




如图,已知点
分别是Δ
的边
的中点,连接
.现将
沿
折叠至Δ
的位置,连接
.记平面
与平面
的交线为
,二面角
大小为
.


(1)证明:
(2)证明:
(3)求平面
与平面
所成锐二面角大小.















(1)证明:

(2)证明:

(3)求平面


如图,四棱锥
中,
为正三角形,平面
底面
,底面
为梯形,
,
,
,
,
,点
在棱
上,且
.

求证:(1)平面
平面
;
(2)求证:
平面
;
(3)求三棱锥
的体积.














求证:(1)平面


(2)求证:


(3)求三棱锥

如图,在多面体
中,底面
为正方形,四边形
是矩形,平面
平面
.

(1)求证:平面
平面
;
(2)若过直线
的一个平面与线段
和
分别相交于点
和
(点
与点
均不重合),求证:
;
(3)判断线段
上是否存在一点
,使得平面
平面
?若存在,求
的值;若不存在,请说明理由.






(1)求证:平面


(2)若过直线








(3)判断线段




