- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 线面垂直的判定
- 点面距离
- 线面距离
- 面面距离
- 线面角
- + 面面垂直的判定
- 判断面面是否垂直
- 证明面面垂直
- 补全面面垂直的条件
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图:已知正方形
的边长为
,沿着对角线
将
折起,使
到达
的位置,且
.


(1)证明:平面
平面
;
(2)若
是
的中点,点
在线段
上,且满足直线
与平面
所成角的正弦值为
,求
的值.









(1)证明:平面


(2)若








已知三棱锥
(如图1)的平面展开图(如图2)中,四边形
为边长为
的正方形,
,
均为正三角形,在三棱锥
中.

(1)求证:平面
平面
;
(2)若点
在棱
上,满足
,
,点
在棱
上,且
,求
得取值范围.







(1)求证:平面


(2)若点








如图,在四棱锥
中,底面
为正方形,
底面
,
,
为线段
的中点,若
为线段
上的动点(不含
).

(1)平面
与平面
是否互相垂直?如果是,请证明;如果不是,请说明理由;
(2)求二面角
的余弦值的取值范围.











(1)平面


(2)求二面角

如图,在三棱锥P-ABC中,平面
平面ABC,
,
.

(1)若
,求证:平面
平面PBC;
(2)若PA与平面ABC所成的角为
,求二面角C-PB-A的余弦值.




(1)若


(2)若PA与平面ABC所成的角为

图1是由正方形
,直角梯形
,三角形
组成的一个平面图形,其中
,
,将其沿
,
折起使得
与
重合,连接
,如图2.

(1)证明:图2中的
,
,
,
四点共面,且平面
平面
;
(2)求图2中的二面角
的大小.











(1)证明:图2中的






(2)求图2中的二面角
