- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 线面垂直的判定
- 点面距离
- 线面距离
- 面面距离
- + 线面角
- 线面角的概念及辨析
- 求线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°角,求二面角B-B1C-A的正弦值.

已知直线AB与平面α所成角为60°,其中点B∈平面α,点A∉平面α,点P是平面α上的动点,且P到直线AB的距离为2,则|PB|的取值范围为__ .
如图所示,四棱锥P—ABCD中,底面ABCD为菱形,PD=AD,∠DAB=
,PD⊥底面ABC


A. (1)求作平面PAD与平面PBC的交线,并加以证明; (2)求PA与平面PBC所成角的正弦值; (3)求平面PAD与平面PBC所成锐二面角的正切值. |
