- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 线面垂直的判定
- 判断线面是否垂直
- 证明线面垂直
- 补全线面垂直的条件
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在三棱锥SABC中,侧面SAB与侧面SAC都是等边三角形,∠BAC=90°,O是BC的中点.求证:
是平面ABC的一个法向量.


如图,在三棱锥ABCD中,∠ABC=∠BCD=∠CDA=90°,
,BC=CD=6,点E在平面BCD内,EC=BD,EC⊥B

A.![]() (1)求证:AE⊥平面BCDE; (2)在棱AC上,是否存在点G,使得二面角CEGD的余弦值为 ![]() ![]() |
如图的多面体是直平行六面体ABCDA1B1C1D1经平面AEFG所截后得到的图形,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(1)求证:BD⊥平面ADG;
(2)求平面AEFG与平面ABCD夹角的余弦值.
如图所示的多面体是由一个直平行六面体被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(1)求证:BD⊥平面ADG;
(2)求直线GB与平面AEFG所成角的正弦值.

(1)求证:BD⊥平面ADG;
(2)求直线GB与平面AEFG所成角的正弦值.