- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 线面垂直的判定
- 判断线面是否垂直
- 证明线面垂直
- 补全线面垂直的条件
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在正三角形
中,
分别是
边上的点,满足
(如图
),将
沿
折起到
的位置,使二面角
成直二面角,连接
(如图
).

(1) 求证:
平面
;
(2)求二面角
的余弦值的大小;












(1) 求证:


(2)求二面角

如图,在直角梯形
中,
//
,
⊥
,
⊥
, 点
是
边的中点, 将△
沿
折起,使平面
⊥平面
,连接
,
,
, 得到如图所示的几何体.


















(Ⅰ)求证:⊥平面
;
(Ⅱ)若,
,求二面角
的大小.


如图,正方形与梯形所在平面互相垂直,,点在线段上且不与重合.

(Ⅰ)当点是中点时,求证:平面;
(Ⅱ)当平面与平面所成锐二面角的余弦值为时,求三棱锥的体积.

(Ⅰ)当点是中点时,求证:平面;
(Ⅱ)当平面与平面所成锐二面角的余弦值为时,求三棱锥的体积.