- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 异面直线所成的角的概念及辨析
- + 证明异面直线垂直
- 求异面直线所成的角
- 由异面直线所成的角求其他量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分15分)如图,正方形
的边长为1,正方形
所在平面与平面
互相垂直,
是
的中点.

(1)求证:
平面
;
(2)求证:
;
(3)求三棱锥
的体积.






(1)求证:


(2)求证:

(3)求三棱锥

(本小题满分12分)如图,四棱锥S—ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD
(1)求证:SO⊥平面ABCD;
(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A—PCD的体积.

(1)求证:SO⊥平面ABCD;
(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A—PCD的体积.

四棱锥P﹣ABCD中,底面ABCD是边长为8的菱形,∠BAD=
,若PA=PD=5,平面PAD⊥平面ABCD.

(1)求四棱锥P﹣ABCD的体积;
(2)求证:AD⊥PB.


(1)求四棱锥P﹣ABCD的体积;
(2)求证:AD⊥PB.
已知
的三边长分别为
,
,
,
是
边上的点,
是平面
外一点.给出下列四个命题:
①若
平面
,且
是
边中点,则有
;
②若
,
平面
,则
面积的最小值为
;
③若
,
平面
,则三棱锥
的外接球体积为
;
④若
,
在平面
上的射影是
内切圆的圆心,则三棱锥
的体积为
;
其中正确命题的序号是 (把你认为正确命题的序号都填上).








①若





②若





③若





④若






其中正确命题的序号是 (把你认为正确命题的序号都填上).
如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2
,BC=CD=2,∠ACB=∠ACD=
.

(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.



(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.
如图,正方体
的棱长为1,线段
上有两个动点
,且
,则下列结论中正确的有 .(填写你认为正确的序号)

①
;
②
;
③若
为
上的一动点,则三棱锥
的体积为定值;
④在空间与直线
都相交的直线只有1条。





①

②

③若



④在空间与直线
