- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面
- 平面的基本性质
- + 平行公理
- 异面直线
- 异面直线所成的角
- 线面关系
- 面面关系
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
梯形ABCD中,AB∥CD,E、F分别为BC和AD的中点,将平面DCEF沿EF翻折起来,使CD到C′D′的位置,G、H分别为AD′和BC′的中点,求证:四边形EFGH为平行四边形.
一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:
①AB∥CM;
②EF与MN是异面直线;
③MN∥CD.
以上结论中正确结论的序号为________.
在正方体ABCD-A1B1C1D1中,M、N、P分别是AD1、BD和B1C的中点,

求证:(1)MN∥平面CC1D1D. (2)平面MNP∥平面CC1D1D.

求证:(1)MN∥平面CC1D1D. (2)平面MNP∥平面CC1D1D.
已知在正方体ABCD-A1B1C1D1中(如图),l⊂平面A1B1C1D1,且l与B1C1不平行,则下列一定不可能的是 ( )
A.l与AD平行 |
B.l与AD不平行 |
C.l与AC平行 |
D.l与BD垂直 |
a,b,c是空间中的三条直线,下面给出四个命题:
①若a∥b,b∥c,则a∥c;
②若a与b相交,b与c相交,则a与c相交;
③若a⊂平面α,b⊂平面β,则a,b一定是异面直线;
④若a,b与c成等角,则a∥b.
其中正确的命题是________(只填序号).
①若a∥b,b∥c,则a∥c;
②若a与b相交,b与c相交,则a与c相交;
③若a⊂平面α,b⊂平面β,则a,b一定是异面直线;
④若a,b与c成等角,则a∥b.
其中正确的命题是________(只填序号).
若AB∥A′B′,AC∥A′C′,有下列结论:
①∠BAC=∠B′A′C′;
②∠ABC+∠A′B′C′=180°;
③∠ACB=∠A′C′B′或∠ACB+∠A′C′B′=180°.
则一定成立的是________(填序号).
①∠BAC=∠B′A′C′;
②∠ABC+∠A′B′C′=180°;
③∠ACB=∠A′C′B′或∠ACB+∠A′C′B′=180°.
则一定成立的是________(填序号).
在如图所示的正方体ABCD-A1B1C1D1中,E,F,E1,F1分别是棱AB,AD,B1C1,C1D1的中点,

求证:(1)
;
(2)∠EA1F=∠E1CF1.

求证:(1)

(2)∠EA1F=∠E1CF1.