- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 柱体体积的有关计算
- 锥体体积的有关计算
- 台体体积的有关计算
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一装有水的直三棱柱
容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面
水平放置,如图所示,点
,
,
,
分别在棱
,
,
,
上,水面恰好过点
,
,
,
,且
.

(1)证明:
;
(2)若底面
水平放置时,求水面的高.
















(1)证明:

(2)若底面

一个密闭且透明的正方体容器中装有部分液体,已知该正方体的棱长为2,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围为__________.
祖暅是我国南北朝时期杰出的数学家和天文学家祖冲之的儿子,他提出了一条原理:“幂势既同幂,则积不容异”.这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.一般大型热电厂的冷却塔大都采用双曲线型.设某双曲线型冷却塔是曲线
与直线
,
和
所围成的平面图形绕
轴旋转一周所得,如图所示.试应用祖暅原理类比求球体体积公式的方法,求出此冷却塔的体积为_______. 







如图,在三棱柱
中,侧面
底面
,
,
,
分別为棱
的中点

(1)求三棱柱
的体积;
(2)在直线
上是否存在一点
,使得
平面
?若存在,求出
的长;若不存在,说明理由.








(1)求三棱柱

(2)在直线




