- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 柱体体积的有关计算
- 锥体体积的有关计算
- 台体体积的有关计算
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别是棱A1B1,CD的中点,点M是EF上的动点(不与E,F重合),FM=x,过点M、直线AB的平面将正方体分成上下两部分,记下面那部分的体积为V(x),则函数V(x)的大致图象是( )


A.![]() | B.![]() |
C.![]() | D.![]() |
圆柱的高为10 cm,当圆柱底面半径变化时,圆柱的体积也随之发生变化,在这个变化过程中,________是自变量,________是因变量.设圆柱底面半径为r(cm),圆柱的体积V(cm3)与r(cm)的关系式为________,当底面半径从2 cm变化到5 cm时,圆柱的体积由________ cm3变化到________ cm3.
如图有一个帐篷,它下部的形状是高为
(单位:米)的正六棱柱,上部的形状是侧棱长为
(单位:米)的正六棱锥.则帐篷的体积最大值为_____立方米.



现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥
,下部分的形状是正四棱柱
(如图所示),并要求正四棱柱的高
是正四棱锥的高
的4倍.

(1)若
则仓库的容积是多少?
(2)若正四棱锥的侧棱长为
,则当
为多少时,仓库的容积最大?





(1)若

(2)若正四棱锥的侧棱长为

