- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 柱、锥、台的表面积
- + 柱、锥、台的体积
- 柱体体积的有关计算
- 锥体体积的有关计算
- 台体体积的有关计算
- 球的体积和表面积
- 组合体的表面积和体积
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
四面体
的四个顶点都在某个球
的表面上,
是边长为
的等边三角形,当A在球O表面上运动时,四面体
所能达到的最大体积为
,则四面体
的体积为







A.![]() | B.![]() | C.![]() | D.![]() |
祖暅是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容异”.这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.
由椭圆
所围成的平面图形绕y轴旋转一周后,得到如图所示的几何体,称为椭球体.请类比应用祖暅原理求球体体积公式的做法,求出椭球体体积,其体积为______________.
由椭圆


已知三棱锥
,
两两垂直且长度均为6,长为2的线段
的一个端点
在棱
上运动,另一个端点
在
内运动(含边界),则
的中点
的轨迹与三棱锥的面所围成的几何体的体积为( )









A.![]() | B.![]() ![]() | C.![]() | D.![]() ![]() |