- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断数列的增减性
- + 确定数列中的最大(小)项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
定义在区间
,对任意
,恒有
成立,又数列
满足
(I)在(-1,1)内求一个实数t,使得
(II)求证:数列
是等比数列,并求
的表达式;
(III)设
,是否存在
,使得对任意
,
恒成立?若存在,求出m的最小值;若不存在,请说明理由.






(I)在(-1,1)内求一个实数t,使得

(II)求证:数列


(III)设




已知函数f(x)=x2+ax+b(a,b为实常数)的零点与函数g(x)=2x2+4x﹣30的零点相同,数列{an},{bn}定义为:
.
(1)求实数a,b的值;
(2)若将数列{bn}的前n项和与数列{bn}的前n项积分别记为Sn,Tn,证明:对任意正整数n,2n+1Tn+Sn为定值;
(3)证明:对任意正整数n,都有
.

(1)求实数a,b的值;
(2)若将数列{bn}的前n项和与数列{bn}的前n项积分别记为Sn,Tn,证明:对任意正整数n,2n+1Tn+Sn为定值;
(3)证明:对任意正整数n,都有

已知数列
中,
,
,且满足
.
(1)求数列
的通项公式 ;
(2)设
,
,是否存在最大的整数
,使得对任意的
,都有
成立?若存在,求出
的值;若不存在,请说明理由 .




(1)求数列

(2)设






对数列{an}和{bn},若对任意正整数n,恒有bn≤an,则称数列{bn}是数列{an}的“下界数列”.
(1)设数列an=2n+1,请写出一个公比不为1的等比数列{bn},使数列{bn}是数列{an}的“下界数列”;
(2)设数列
,求证数列{bn}是数列{an}的“下界数列”;
(3)设数列
,
,n∈N*,构造Tn=(1﹣a2)(1﹣a3)…(1﹣an),Pn=(1+b1)+(1+b2)+…+(1+bn),求使Tn≤kPn对n≥2,n∈N*恒成立的k的最小值.
(1)设数列an=2n+1,请写出一个公比不为1的等比数列{bn},使数列{bn}是数列{an}的“下界数列”;
(2)设数列

(3)设数列


已知等差数列
的公差
大于0,且
是方程
的两根.数列
的前
项和为
,满足


(Ⅰ) 求数列
,
的通项公式;
(Ⅱ) 设数列
的前
项和为
,记
.若
为数列
中的最大项,求实数
的取值范围.










(Ⅰ) 求数列


(Ⅱ) 设数列






