- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断数列的增减性
- + 确定数列中的最大(小)项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数
,数列
满足

⑴求数列
的通项公式;
⑵设
,若
对
恒成立,求实数
的取值范围;
⑶是否存在以
为首项,公比为
的等比数列
,
,使得数列
中每一项都是数列
中不同的项,若存在,求出所有满足条件的数列
的通项公式;若不存在,说明理由




⑴求数列

⑵设




⑶是否存在以







已知f(x)=
(m为常数,m>0且m≠1).设f(a1),f(a2),…,f(an)…(n∈N)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an·f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn;
(3)若cn=f(an)
f(an),问是否存在m,使得数列{cn}中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,请说明理由.

(1)求证:数列{an}是等差数列;
(2)若bn=an·f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn;
(3)若cn=f(an)

已知数列{an},an≥0,a1=0,an+12+an+1-1=an2(n∈N*).对于任意的正整数n,不等式t2-an2-3t-3an≤0恒成立,则正数t的最大值为( )
A.1 | B.2 | C.3 | D.6 |
已知函数
的图象上有一点列
,点
在
轴上的射影是
,且
(
且
),
.
(1)求证:
是等比数列,并求出数列
的通项公式;
(2)对任意的正整数
,当
时,不等式
恒成立,求实数
的取值范围.
(3)设四边形
的面积是
,求证:
.









(1)求证:


(2)对任意的正整数




(3)设四边形



已知数列
的通项公式为
,给出下列说法:
①数列
中的最大项和最小项分别是
,
;
②数列
中的最大项和最小项分别是
,
;
③数列
中的最大项和最小项分别是
,
;
④数列
中的最大项和最小项分别是
,
.
其中,说法正确的是_______________.(填序号)


①数列



②数列



③数列



④数列



其中,说法正确的是_______________.(填序号)