- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断数列的增减性
- + 确定数列中的最大(小)项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
的前
项和为
,点
在函数
图像上;
(1)证明
是等差数列;
(2)若函数
,数列
满足
,记
,求数列
前
项和
;
(3)是否存在实数
,使得当
时,
对任意
恒成立?若存在,求出最大的实数
,若不存在,说明理由.





(1)证明

(2)若函数







(3)是否存在实数





已知数列
满足
,
.
(1)是否能找到一个定义在
的函数
(
是常数)使得数列
是公比为3的等比数列,若存在,求出
的通项公式;若不存在,说明理由;
(2)记
,若不等式
对任意
都成立,求实数
的取值范围.



(1)是否能找到一个定义在





(2)记




已知等差数列
的前
项和为
,
,
为整数,且对任意
都有
.
(1)求
的通项公式;
(2)设
,
求
的前
项和
;
(3)在(2)的条件下,若数列
满足
.是否存在实数
,使得数列
是单调递增数列.若存在,求出
的取值范围;若不存在,说明理由.







(1)求

(2)设





(3)在(2)的条件下,若数列




