- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- + 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,其中
为常数,
为自然对数的底数.
(1)若
在区间
上的最大值为
,求
的值;
(2)当
时,判断方程
是否有实根?若无实根请说明理由,若有实根请给出根的个数.



(1)若




(2)当


已知函数
,其中
.
(Ⅰ)若函数
在其定义域内单调递减,求实数
的取值范围;
(Ⅱ)若
,且关于
的方程
在
上恰有两个不相等的实数根,求实数
的取值范围.


(Ⅰ)若函数


(Ⅱ)若





设函数
.
(1)求f(x)的单调区间;
(2)若当
时,不等式f (x)<m恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.

(1)求f(x)的单调区间;
(2)若当

(3)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.