- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- + 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)当
时,求函数
的极值;
(2)若
恒成立,求
的取值范围;
(3)设函数
的极值点为
,当
变化时,点(
,
)构成曲线M.证明:任意过原点的直线
,与曲线M均仅有一个公共点.

(1)当


(2)若


(3)设函数






(12分)已知函数
(1)当a=-1时,求函数f(x)的单调区间;
(2)若函数
的图象与直线y=ax只有一个公共点,求实数b的取值范围。

(1)当a=-1时,求函数f(x)的单调区间;
(2)若函数
