- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- + 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
,
,其中a,
.
Ⅰ
求
的极大值;
Ⅱ
设
,
,若
对任意的
,
恒成立,求a的最大值;
Ⅲ
设
,若对任意给定的
,在区间
上总存在s,
,使
成立,求b的取值范围.




















定义在
上的函数
,
单调递增,
,若对任意
,存在
,使得
成立,则称
是
在
上的“追逐函数”.若
,则下列四个命题:①
是
在
上的“追逐函数”;②若
是
在
上的“追逐函数”,则
;③
是
在
上的“追逐函数”;④当
时,存在
,使得
是
在
上的“追逐函数”.其中正确命题的个数为( )


























A.![]() | B.![]() | C.![]() | D.![]() |