- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x对所有的b∈(-∞,0],x∈(e,e2]都成立,则实数a的取值范围是( )
A.[e,+∞) | B.[![]() | C.[![]() | D.[e2,+∞) |
已知函数
,
.
在
上有最大值9,最小值4.
(1)求实数
的值;
(2)若不等式
在
上恒成立,求实数
的取值范围;
(3)若方程
有三个不同的实数根,求实数
的取值范围.




(1)求实数

(2)若不等式



(3)若方程


已知函数f(x)=x2ex,当x∈[-1,1]时,不等式f(x)<m恒成立,则实数m的取值范围为( )
A.[![]() | B.(![]() | C.[e,+∞) | D.(e,+∞) |
已知函数
,g(x)=-x2+2bx-4,若对任意的x1∈(0,2),任意的x2∈[1,2],不等式f(x1)≥g(x2)恒成立,则实数b的取值范围是( )

A.![]() | B.(1,+∞) | C.![]() | D.![]() |
已知函数f(x)=
x3+
x2+
x(0<a<1,x∈R).若对于任意的三个实数x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求实数a的取值范围.



(本小题满分14分)已知函数f(x)=
,曲线y=f(x)在点(1,f(1))处的切线方程为x+(e–1)2y–e=0.其中e =2.71828 为自然对数的底数.
(Ⅰ)求a,b的值;
(Ⅱ)如果当x≠0时,f(2x)<
,求实数k的取值范围.

(Ⅰ)求a,b的值;
(Ⅱ)如果当x≠0时,f(2x)<

已知函数
(
为自然对数的底数,
),
,
.
(1)若
,
,求
在
上的最大值
的表达式;
(2)若
时,方程
在
上恰有两个相异实根,求实根
的取值范围;
(3)若
,
,求使
的图象恒在
图象上方的最大正整数
.





(1)若





(2)若




(3)若




