- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=lnx+(e﹣a)x﹣2b,其中e为自然对数的底数.若不等式f(x)≤0对x∈(0,+∞)恒成立,则
的最小值等于___

已知函数
(
为常数,
为自然对数的底数).
(Ⅰ)当
时,讨论函数
在区间
上极值点的个数;
(Ⅱ)当
,
时,对任意的
都有
成立,求正实数
的取值范围.



(Ⅰ)当



(Ⅱ)当





已知函数
.
(Ⅰ)若
在
上的最大值为
,求实数
的值;
(Ⅱ)若对任意
,都有
恒成立,求实数
的取值范围;
(Ⅲ)在(Ⅰ)的条件下,设
,对任意给定的正实数
,曲线
上是否存在两点
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上?请说明理由.

(Ⅰ)若




(Ⅱ)若对任意



(Ⅲ)在(Ⅰ)的条件下,设








设a>0,b>0,已知函数f(x)=
.
(1)当a≠b时,讨论函数f(x)的单调性;
(2)当x>0时,称f(x)为a、b关于x的加权平均数.
(1)判断f(1),f(
),f(
)是否成等比数列,并证明f(
)≤f(
);
(2)a、b的几何平均数记为G.称
为a、b的调和平均数,记为H.若H≤f(x)≤G,求x的取值范围.

(1)当a≠b时,讨论函数f(x)的单调性;
(2)当x>0时,称f(x)为a、b关于x的加权平均数.
(1)判断f(1),f(




(2)a、b的几何平均数记为G.称
