- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,记
.
(1)求证:
在区间
内有且仅有一个实数;
(2)用
表示
中的最小值,设函数
,若方程
在区间
内有两个不相等的实根
,记
在
内的实根为
.求证:
.


(1)求证:


(2)用










设
.
(l)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值;
(2)是否存在正整数a,使得1n+3n+…+(2n﹣1)n
(an)n对一切正整数n都成立?若存在,求a的最小值;若不存在,请说明理由.

(l)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值;
(2)是否存在正整数a,使得1n+3n+…+(2n﹣1)n
