- 集合与常用逻辑用语
- 函数与导数
- + 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
满足
,且
,
为自然对数的底数.
(Ⅰ)已知
,求
在
处的切线方程;
(Ⅱ)若存在
,使得
成立,求
的取值范围;
(Ⅲ)设函数
,
为坐标原点,若对于
在
时的图象上的任一点
,在曲线
上总存在一点
,使得
,且
的中点在
轴上,求
的取值范围.





(Ⅰ)已知



(Ⅱ)若存在





(Ⅲ)设函数












设函数
,
.
(I)若
在
上的最大值为
,求实数
的值;
(II)若
是定义域上的单调函数,求实数
的取值范围;
(III)在(I)的条件下,当
时,令
,试证明
(
)恒成立.


(I)若




(II)若


(III)在(I)的条件下,当



